Sec. 4.3 Graphs of Exponential Functions

Graphs of the Exponential Family: The Effect of the Parameter a

In the formula $Q = ab^{t}$, the value of a tells us where the graph crosses the Q-axis, since a is the value of Q when t = 0. Match each equation to the appropriate graph. EQUATIONS:

$$Q = 150 (1.2)^t$$

$$Q = 50 (1.2)^t$$

$$Q = 100 (1.2)^t$$

The growth factor, b, is called the *base* of an exponential function. Provided a is positive, if b > 1, the graph climbs when read from left to right, and if 0 < b < 1, the graph falls when read from left to right.

EQUATIONS:

$$Q = 50 (.8)^{t}$$

$$Q = 50 (1.4)^{t}$$

$$Q = 50 (1.2)^{t}$$

$$Q = 50 (.6)^{t}$$

The horizontal line y = k is a horizontal asymptote of a function, f, if the function values get arbitrarily close to k as x gets large (either positively or negatively or both). We describe this behavior using the notation

$$f(x) \to k \text{ as } x \to \infty$$

or

$$f(x) \rightarrow k \text{ as } x \rightarrow -\infty$$
.

Look at graphs

Alternatively, using limit notation, we write

$$\lim_{x \to \infty} f(x) = k \quad \text{or} \quad \lim_{x \to \infty} f(x) = k$$

Ex. A capacitor is the part of an electrical circuit that stores electric charge. The quantity of charge stored decreases exponentially with time. Stereo amplifiers provide a familiar example: When an amplifier is turned off, the display lights fade slowly because it takes time for the capacitors to discharge. If t is the number of seconds after the circuit is switched off, suppose that the quantity of stored charge

(in micro-coulombs) is given by $Q = 200(0.9)^t$, $t \ge 0$.

- a. Describe in words how the stores charge changes over time. It decreases by 10% each second
- b. What quantity of charge remains after 10 seconds? 20 seconds? 30 seconds? 1 minute? 2 minutes? 3 minutes?
- c. Graph the charge over the first minute. What does the horizontal asymptote of the graph tell you about the charge?

Ex. A 200 g sample of carbon 14 decays according to the formula $Q = 200 (.886)^t$ where t is in thousands of years. Estimate when there is 25 g of carbon 14 left.

Gaphically: Intersect with
$$y=25$$
 Solve $25=200(.886)$ t = 17.180 $\left[t=17,180 \text{ years} \right]$

Ex. Given the following table of population data for the city of Houston since 1900, find an exponential equation to model the situation. Graph your solution. What is the limit?

t	N	t	N
0	184	60	1583
10	236	70	2183
20	332	80	3122
30	528	90	3733
40	737	100	4672
50	1070	110	5937

f population.

Exponential Regression (=10) $N = 190(1.034)^{\frac{1}{2}}$ $\lim_{x \to \infty} f(x) = \infty$ $\lim_{x \to \infty} f(x) = 0$

Ex. Beth is interested in finding a function that explains the closing price of Harley Davidson stock at the end of each year. She obtains the following data:

Year (x)	Closing Price (y)	
1987 $(x = 0)$.392	
/ 1988	.7642	
2 1989	1.1835	
3 1990	1.1609	
4 1991	2.6988	
5 1992	4.5381	
6 1993	5.3379	
7 1994	6.8032	
7 1995	7.0328	
9 1996	11.5585	
/0 1997	13.4799	
1998	23.5424	
/2 1999	31.9342	
/3 2000	39.7277	

- a. Using a graphing calculator, draw a scatter diagram with year as the independent variable.
- b. Using a graphing calculator, fit an exponential function to the data. $y = 5532(1.4028)^{1/2}$
- c. Graph the exponential function found in part b on the scatter diagram.
- d. Using the solution to part b, predict the closing price of Harley Davidson stock at y=,5532 (1.4028) 14 CALC-VALUE the end of 2001. $(14=\times)$

63 2154

HW: pg 152 – 155, #1, 3, 5, 10, 11-14, 15, 17, 28, 29, 30, 38, 39, 40, 41, 44